Ch 9 CODED INEQUALITIES

ANSWERSAND EXPLANATIONS

1. (c) M = K

..... (i);

 $D \leq K$

..... (ii);

R < K

..... (iii)

From (i) and (ii), we get

 $M = K \ge D \implies M \ge D$

Hence, either M > D (conclusion II) or M = D (conclusion I) is true

 $2. \quad \text{ (d)} \quad F \leq M... \text{ (i); } M \geq R... \text{ (ii); } E \geq F... \text{ (iii)}$

From (i) and (iii), no specific relation can be obtained between M and E. Similarly, no specific relation can be obtained between R and E.

3. (e) H = K...(i); T < H...(ii),

 $W < T \dots (iii)$

From (i), (ii) and (iii), we get

 $K = H > T \ge W \implies K > W$ (conclusion I) and

T < K (conclusion II).

4. (b) N > A...(i), A < L...(ii), F = N...(iii)

From (i) and (iii), we get

 $F = N > A \Rightarrow F > A$ (conclusion II). But no specific relation can be obtained between L and F. Hence, conclusion I is not necessarily true.

5. (b) $B \le D...(i)$; D = M...(ii);

 $F \ge M \dots (iii)$

From (i), (ii) and (iii), we get

 $F > M = D \ge B \implies B \le M$ and F > B (conclusion II).

Since, $B \le M$, therefore, conclusion I is not necessarily true.

6. (e) $P \neq Q$...(i), Q > R ... (ii), P = R ...(iii)

From (ii) and (iii), we get $Q > R = P \Rightarrow Q > P$. Hence, both I and II are true.

(a) A = B ... (i), B ≠ C ... (ii), C < A ... (iii) From (iii), conclusion I is true. II contradicts statement (ii), hence, it is not true.

8. (d) $Y \ge Z$...(i), $Z \ge Q$... (ii), $Q \ne P$...(iii)

From (i) and (ii), we get $Y \ge Z \ge Q \Rightarrow Y \ge Q$... (A)

Hence, I is not true. From (iii), two possible relationships between P and Q are;

Case I: When $P \ge Q$

Now, using (A), we get $Y \ge Q \le P \implies$ no conclusion.

Case II: When $Q \ge P$

using (A), we get $Y > Q > P \Rightarrow Y > P$. Hence, II is not true.

9. (b) E > F ... (i), F > L ... (ii), L = N ...(iii)

From (ii) and (iii), we get $F \ge L = N \Rightarrow F \ge N$ or N < F

Hence, I may be true but not necessarily so.

From (i) and (ii), we get $E \ge F \ge L \implies E \ge L$

Hence, II is true.

10. (d) H > J ... (i), J < K ... (ii), K > M ... (iii)

From (ii) and (iii), we get $J \le K \ge M \Rightarrow$ no relationship between J and M can be established. Hence, II can't be established. Again, combining all we can't conclude the relationship between H and M. Hence, I is not true.

11. (c) $M \ge T$... (i), T = V (ii), $V \le E$...(iii)

From (i) and (ii), we get

 $M \geq T = V \Rightarrow M \geq V \Rightarrow \text{ either } V = M \text{ or } V \leq M \text{ is true.}$

12. (d) $L \le U$...(i); $U \ge G$...(ii); $G \ge S$...(III)

Combining (ii) and (iii), we get

$$U > G \ge S \dots (IV)$$

Now, from (i) and (iv), we do not get any specific relation between L and S. Hence, conclusion I (L > S) is not true. On a similar basis conclusion II

CODED INEQUALITIES

(G < L) is also not true.

13. (e) $A \le U$...(i) U = L ...(ii), J > L ...(iii)

Combining (i), (ii) and (iii), we get

$$J > U = L \ge A \implies J > A \text{ and } J > U.$$

Hence, both the conclusions are true.

14. (a) $C \le S ...(i) S < D ...(ii); D > M ...(iii)$

Combining (i) and (ii), we get

$$D > S \ge C \dots (iv)$$

From (iv), we get D > C. Hence, conclusion I is true. From (iii) and (iv), we do not get any specific relation between S and M. Hence, conclusion II is not true.

15. (c) Y < G ...(i); $G \ge H$...(ii); H = R ...(iii)

Combining (ii) and (iii), we get

$$G \ge H = R \implies R = G \text{ or } R < G$$

Hence, either conclusion I or conclusion II is true.

16. (b) $P \ge Q ...(i), D > P ...(ii); S = D ...(iii)$

Combining (ii) and (iii). we get

 $S = D > P \implies S > P$. Hence, conclusion II is true. But I is not true.

17. (b) $Z \le N$ (i); $F \ge N$ (ii); $F \le K$ (iii) Combining all, we get

$$K > F > N > Z \Rightarrow K > N \text{ and } K > Z$$

Hence, conclusion I (K = N) is not necessarily true but conclusion II (K > Z) is true.

18. (c) D = T(i); $T \ge M$ (ii); $M \le K$ (iii) Combining (i) and (ii), we get

$$D = T \ge M \Rightarrow D \ge M \Rightarrow D = M \text{ or } D > M$$

Hence, either conclusion I (M = D) or conclusion I

(D > M) is true.

19. (c) $W \ge A$ (i); $B \le A$ (ii); B > M ... (iii)

Combining all, we get

$$W \ge A \ge B \ge M \Rightarrow B \le W$$

$$\Rightarrow$$
 B < W or B = W

Hence, either conclusion I or II is true.

20. (a) $J \le M$ (i); M = N(ii); N < T (iii)

Combining all, we get

$$J \le M = N < T \Rightarrow T > J$$

Hence, only conclusion I is true

21. (d) $V \le F$ (i); F > R (ii); $R \ge G$ (iii)

Combining (ii) and (iii), we get $F > R \ge G$ (iv) Comparing (i) and (iv), we can't get any specific relationship between G and V. Hence, both conclusions are not true.

22. (d) B = K

...(i);

 $K \le D$

...(ii);

D > M

...(iii)

From (i) and (ii), we get

$$D \ge K = B$$

...(iv)

From (iii) and (iv), no specific relation can be obtained between B and M. Therefore, B = M (Conclusion I) and $B \le M$ (Conclusion II) are not necessarily true.

23. (b) $H \le N$

... (i)

 $N \ge W$

...(ii);

 $W \ge V$

(iii)

From (ii) and (iii), we get

...(iv)

From (i) and (iv), no specific relation can be obtained between H and V. Hence, $H \leq V$ (Conclusion I) is not necessarily true. But $V \leq N$ (Conclusion II) follows from equation (iv).

24. (c) $J \le D$

...(i);

 $Q \ge D$

...(ii);

 $Q \le M$

...(iii)

Combining (i) and (ii), we get

 $Q \ge D \ge J \Rightarrow Q \ge J$ (Conclusion I) or Q = J

(Conclusion II)

Hence, either conclusion I or conclusion II is true.

25. (b) $F \ge G$

...(i);

N = G

... (ii);

 $N \ge T$

... (iii)

Combining all, we get

 $F \ge G = N > T \Rightarrow N \le F$ (Conclusion II) and T < F

Hence, conclusion I $(T \ge F)$ is not true but conclusion II is true.

26. (a) $M \ge R$

...(i);

$$R \le K$$

...(ii),

$$K = T$$

... (iii)

Combining (ii) and (iii), we get

$$K=T>R$$

$$\Rightarrow T \ge R$$
 (Conclusion I).

On the basis of the given information no specific relation can be obtained between T and M. Hence, $T \ge M$ (Conclusion II) is not necessarily true.

27. (d) $K \ge M ... (i); M \ne R ... (ii); R = T ... (iii)$

Combining all equations, we get

$$K \ge M \ne R = T \implies M \ne T$$

From this we can't get any specific relation between K and T. Hence, conclusion I is not true. Conclusion II is false since $M \neq T$.

28. (b) $B \le D$ (i); D > N ...(ii); $N \le H$...(iii)

From equations (ii) and (iii), we can't obtain any specific relation between H and D. Hence, conclusion I ($H \ge D$) is not true. But conclusion II ($H \ge N$) follows from equation (iii)

 $29. \quad (d) \quad M \, \geq \, K \, ... \, (i); \, K \geq P \, ... (ii); \, P \leq N \, ... (iii)$

Combining (i) and (ii), we get

$$M \ge K > P \dots (iv)$$

From (iii) and (iv), no specific relation can be obtained between M and N. Hence, conclusion I (M > N) and conclusion II (M = N) are not true.

30. (c) $T \le M ...(i)$; M = Q ...(ii); $Q \le R ...(iii)$

Combining (i) and (ii) we get

$$M-Q \ge 1 \Rightarrow Q >$$

(Conclusion I)

or

Q = T (Conclusion II)

31. (e) D > B ... (i); $B \le T ... (ii)$; $T \le M ... (iii)$

Combining (ii) and (iii), we get $M \geq T \geq B \implies M \geq B \text{ (Conclusion I) and}$

 $T \ge B$ (Conclusion II).

32. (e)

33. (b) $K > B ...(i), B \le D...(ii), D \le K...(iii)$

From (i), B < K. Hence II is true but I is not true.

34. (c) $N = R...(i), R \le M...(ii), M \ge J...(iii)$

From (i) and (ii), we get $N = R \le M \implies N \le M$. Hence either I or II is true.

35. (a) $S \ge T...(i), T \le R...(ii), R \le M...(iii)$

From (ii) and (iii), we get $T \le R \le M \Rightarrow T \le M$ or M > T. Hence I is true and II is not true.

36. (d) $H \le V$... (i), V = M ... (ii), M > R... (iii)

Combining all, we get $H \le V = M > R \implies no$ relationship between H and R can be established. Since conclusions I and II are not exhaustive, neither of them is true.

37. (c) $S \ge K...$ (i); $T \le K...$ (ii);

Combining (i) and (iii), we get

 $S \ge K \ge B$. Hence, S > B or S = B. Therefore either conclusion I or II is true.

38. (e) Combining all the three statements, we get

 $Y = Z \, \geq \, D = H. \mbox{ Therefore } D \, \leq \, Y \mbox{ and } H \, \leq \, Z \mbox{ are true}.$

39. (b) Combining all the three statements together we get

M > N > P > R. Therefore $P \le M$ is not true, but R < N is true.

40. (d) Combining I and III, we get

 $S \ge K > T$. Therefore $S \le T$ is not true. We have no information about the relationship between B and T.

41. (e) Combining all the three statements, we get

M > N > P > R. Therefore N > R and P < M are true

 $M = Q \ge T \implies Q > T$ 42. (a) J > T(i)

T≤B....(ii)

B < R ... (iii)

From (ii) and (iii), we get

 $R \ge B \ge T \dots (iv)$

Hence, no specific relation can be obtained between (i) J and R or (ii) J and B. Hence, neither I nor III follows. From equation (iv) we get R > T. Therefore, conclusion II does not follow.

43. (b) $T \le M ... (i)$

K< M ...(ii)

 $K \ge Z \dots (iii)$

From (ii) and (iii), we get

$$M \ge K \ge Z$$
 ...(iv).

$$\Rightarrow$$
 M > Z

Hence, conclusion II $(Z \le M)$ follows. But conclusion III (M = Z) does not follow. Again, no specific relation can be obtained between T and Z. Hence, conclusion I does not follow.

44. (e) $K \leq N ...(i)$;

$$N = T ...(ii);$$

$$R \le T ...(iii)$$

From (i) and (ii), we get

$$T = N \ge K ...(iv)$$

From (ii) and (iii), we get

$$T = N > R ...(v)$$

From equation (iv), we get $T \ge K$. Hence, conclusion II (T > K) is not necessarily true.

From equations (iv) and (v) we can't obtain any specific relation between K and R. There fore, conclusion I and conclusion III do not follow. Thus, no conclusion follows.

45. (d) H > M ... (i); $M \ge D ...$ (ii); T < D ... (iii)

From (i), (ii) and (iii), we get

$$H > M \ge D > T$$

From equation (iv), we get H > T. This implies T < M. Hence, conclusion I follows.

Again, H > D. Hence II follows but III does not.

46. (e) $W \ge M...$ (i); M > F... (ii); $D \le F...$ (iii)

From (i), (ii) and (iii), we get

$$W \ge M > F \ge D...(iv)$$

From (iv); we get W > D. Hence, conclusion I (D < W) follows. Again, from the equation (iv), we get M > D. Hence, conclusion II (M > D) follows. Again, from the equation (iv), we get W > F. Hence, conclusion III (F < W) follows.

47. (d) $M \le K ... (i)$; K = D... (ii); $D \le P... (iii)$

Combining all the equations, we get

 $P \geq D = K > M \Longrightarrow P > M. \mbox{ Hence, conclusion}$ I $(M \leq$ P) and conclusion II (M = P) are not true.

48. (e) $W \ge T...$ (i); T > M... (ii); B < M...(iii) Combining all, we get $W \ge T > M > B$

 \Rightarrow W > B and W > M. Hence, both conclusions (W > B, M < W) are true.

49. (d) H = D ...(i); D < R ...(ii) R > N ...(iii)

Combining (i) and (ii), we get

$$R > H = D ...(iv)$$

From (iii) and (iv), we cann't get any specific relation between N and H. Therefore, conclusion I (N = H) and conclusion II (N > H) are not true.

50. (d) $Z \le R$...(i); $R \ge D$...(ii); $D \le T$...(iii)

With these equations no relation can be established between D and Z, and Z and T.

51. (c) $Q < P ...(i), P \le F ...(ii); F = M ...(iii)$

Combining all the equations, we get

$$F = M \ge P > Q \implies M \ge P$$
, ie $M > P$ or $M = P$

Hence, either conclusion I or II is true.

52. (d) E > J ...(i); J < H ...(ii); $H \ge M...(iii)$

No relation can be established between E and M or between J and M. Hence, conclusion I (E > M) and conclusion II (J > M) are not true.

53. (b) $R \ge P ...(i)$; $P \ge M ...(ii)$; $M \le D ...(iii)$

Combining (i) and (ii), we get $R \ge P \ge M$...(iv).

From conclusion (iv), we get R > M. Hence, conclusion II (M < R) is true. But we can't get any specific relation between D and R. Therefore conclusion I is not true.

54. (c) $F \le K$...(i); $K \ge D$...(ii); $N \le D$...(iii)

Combining the equations (ii) and (iii), we get

$$K \ge D \ge N \implies K \ge N$$
, i.e., $K > N$ or $K = N$

Hence, either conclusion I or conclusion II is true.

55. (a) Z = D ... (i); F < D ... (ii) F > H ... (iii)

From (i), (ii) and (iii), we get

 $Z = D \ge F > H \implies H < Z \text{ (conclusion I)}$

and Z > F

Hence, conclusion I is true but conclusion II does not necessarily true.

(iv)

 $56. \quad (a) \quad M \leq N \quad ... \quad (i); \quad N \leq T \quad ... \\ (ii); \ T \geq B \ ... \\ (iii)$

From (i) and (ii), we get

 $T \ge N > M \implies T > M$ (conclusion I)

But no relation can be obtained between B and N. Hence, conclusion II does not follow.

- 57. (d) T≥R(i); K>R ...(ii); M < K ...(iii) From (ii) and (iii), we can't compare R and M. Hence, I does not follow. On a similar basis, we can't compare M and T. Hence, conclusion II also does not follow.</p>
- 58. (b) $M \le K$...(i) $B \le K$...(ii) B > J ... (iii) C o m b i n i n g (ii) and (iii), we get

From (i) and (iv) we can't obtain any relation between M and J. Hence, conclusion I does not follow. But conclusion II is true from (iv).

59. (c) $V \ge R$ (i); T = V(ii);

 $T \leq E \dots (iii)$

From (i), (ii) and (iii), we get

 $E \ge T = V \ge R \implies E \ge R \implies E > R \text{ or } E = R$

