CH5 GEOMETRY

ANSWERS AND EXPLANATIONS

EXERCISE 1

- 1. (a) $a + 36^{\circ} + 70^{\circ} = 180^{\circ}$ (sum of angles of triangle) $\Rightarrow a = 180^{\circ} - 36^{\circ} - 70^{\circ} = 74^{\circ}$ $b = 36^{\circ} + 70^{\circ}$ (Ext. angle of triangle) = 106° $c = a - 50^{\circ}$ (Ext. angle of triangle) $= 74^{\circ} - 50^{\circ} = 24^{\circ}$.
- 2. (b) Since the sum of all the angle of a quadrilateral is 360°
 We have ∠ ABC + ∠ BQE + ∠ DEF + ∠ EPB = 360°
 ∴∠ ABC + ∠ DEF = 180°
 [∵ BPE = EQB = 90°]
- 3. (b) $m \angle AHG = 180 108 = 72^0$
 - \therefore \angle AHG = \angle ABC(same angle with different names)
 - $\therefore \Delta AHG \Delta ABC \dots (AA test for similarity)$

$$\frac{AH}{AB} = \frac{AG}{AC} \; ; \quad \frac{6}{12} = \frac{9}{AC}$$

$$\therefore AC = \frac{12x9}{6} = 18$$

$$\therefore$$
 HC = AC – AH = 18 – 6 = 12

4. (b) In $\triangle ABC$, $\angle C = 180 - 90 - 30 = 60^{\circ}$

$$\therefore \Delta DCE = \frac{60}{2} = 30^{\circ}$$

Again in $\triangle DEC$, $\triangle CED = 180 - 90 - 30 = 60^{\circ}$

5. (c) In a right angled Δ , the length of the median is $\frac{1}{2}$ the length of the hypotenuse. Hence $BD = \frac{1}{2}AC = 3cm.$

ABCD is square $a^2 = 4 \Rightarrow a = 2$ ac = BD = $2\sqrt{2}$

perimeters of four triangles

$$= AB + BC + CD + DA + 2(AC + BD)$$

$$= 8 + 2(2\sqrt{2} + 2\sqrt{2}) = 8(1 + \sqrt{2})$$

 (d) The quadrilateral obtained will always be a trapeziam as it has two lines which are always parallel to each other.

9. (b) It is a rectangle.

(In a cyclic parallelogram each angle is equal to 90°. So, it is definitely either a square or a rectangle. Since the given cyclic parallelogram has unequal adjacent sides, it is a square.)

10. (a)

